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contradic t the second corner solution above with 00 > 0vac

(~~~~ 
has the same sign as \ ) .  There is no strict  contradiction

since the standard elliptic existence theorem referred to

does not apply to an unbounded sector. To consider just the

relation of the sign of t4, to the sign of A , we employ the

• Green ’s function of the sector (always negative ),

A J G~ !4,~~ dx dy

This implies that the sign of ~ is opposite to that of .\

except that a simple estimate shows that the integral ceases It

to converge for r -
~ when > 0vac thus there is no

contradiction in the unbounded sector.

We see that the large angle solution , ~o > 0vac ’ is not

val id for the neighborhood of a corner in side an island

(cf. Fig . 1). However , there is no reason to discard it in

a nons imple region (e.g. outside the figure-eight in

Fig. 1). The reader can verify that the sign of i~’ can

change in an annulus .

A similar argument gives a somewhat di fferent conclus ion

for bounded current, say toP = 1. It is easy to construct

separatrix solutions of toP = 1 as in Fig. 1. Suppose ip = 0

at the separatrix. The same arguments as above shows that

< 0 inside the figure—eight and clearly ~‘ ‘ 0 outside .

Near the separatrix, the representation

~ ax 2 + ~.(l — a ) y 2 (a < 0 or a > 1)
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shows that ~P > 0 on the obtuse side . We conclude that the

inner angle of the figure-eight is always acute (for finite

current).

The similar s tatement for the singular current, (37),

is that an inter ior corner of an island is smaller than 0vac
( for the given m or n ) ,  but the exterior angle can be either

V larger or smaller . To make this statement meaning ful , we
V must match the corner solution, 0 < S < to one in the

supplementary corner , 00 < 8 < ~r (using symmetry to obtain

a ful l  neighborhood of the orig in , Fig. 7 ) .

We demand that the vector V~ be continuous , i.e. that

i~ (automatic) and ~~/~n be continuous across a ray on which

= 0. Suppose the solution in 0 < 0 < 00 is fixed. Since

r ’~~~g ’ = rm~~v0 we must take the same exponent m

(and n) in the two sectors; g ’ v0 must have the same magnitude

but change sign (i4 changes sign) and X in the second region

i.iust be adjusted to obtain a sector angle 
~~~~ 

= - To

verify this, we first remark that carrying out the prev ious

calculation with g < 0 is equivalent to changing the sign of

A , i.e. it gives the same formulas ( 4 4 )  and ( 4 5 ) ,  but with g1
replaced by 

~~ 
and j

a = - 2 X / ( l + n )
(48)

= &/m2 j~~1j~~~
’
~ = - 2X/(l+n)m

2
I~~1j~~~

Equation (45) determines a unique value ~ to produce e 0 = 
~~~~~~~~~~

Equation (44) can be rewritten

V

5~
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2 2—2 — — l+n 2—2 —v0 = m g 1 
— 

~ lg 1~ 
= in g1 (1 — 0) (-~9)

which determines 
~~~~~

, since v~ is unchanged. Thus we have

extended the corner solution to include an entire neighbor-

hood of the or igin , Fig. 7, with ~ = 0 at two intersecting

straight lines and ~~~
s continuous .

We have already established that an interior corner

has 0 < S . Since 1 < in < 2, 8 is obtuse. But ,o vac vac
depending on whether is smaller or larger than the supple-

ment of 0vac ~~~~ 
= — can be either larger or smaller

than 5vac~ 
Also, can be acute or obtuse. If > 

~vac ’

the current (too ) reverses across the separatrix; if 5 < 0vac ’

the current has the same sign on both sides. If 0 = — S
0 vac

then the current in the exterior corner is zero (or it can

be finite and nonzero by fitting to 2~4 = 1 instead of E~ i 0;

this requires adding a higher oVcder correction since ~ “ r~

is small compared to V~~ r~ rn) .

To summarize, from the corner analys is , two parameters ,

and n can be given arbitrarily [subject to -1 < n < 0 and

00 
< (l-n)rr/2J, and an appropriate solution can be found in

an entire neighborhood of the origin. The current reverses

or not depending on whether < ~~~~~~~~~~ or not.

Next we turn to a boundary layer analysis of the entire

separatrix and of a smooth closed curve (Fig. 6), each with

the singularity given in (37) . We have already seen that a

global ana1ys~ s restricts the class of valid corner solutions .

Near the separa trix (or smooth boundary curve ’ , away from the
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corner , the solution is approximately one-dimensional.

Consider first the smooth curve . Taking y as the (inward

pointing) normal coordinate , and assuming that ip > 0, we have

• = (50)

which integrates to

(51)

where - 
V

= U
2 ÷ ~l+n , a = 2X/ (l+n) . (52)
0

The volume (oriented inward so that i~~
’ > 0) is

~~~~~~~~~~~~~~~~~~~~~~~~~ (53 )

0

Therefore ,

~~r 

~~~ 

(54)

In this integral , u0(s) (~~ /~y at the boundary
) is assumed

to be given.

For a smooth curve

(~~
TJ = — A i p ’ ~~~~~~~~ 

(55)

(th is formu la cannot be used near a corner where u becomes

zero). The most important conclusion that. we draw is that ~4,” V

has the same s ingular i ty  ( v i z .  ~j
fl

) as &~~~ , and even has the

same sign , 4,”/X~~ = (~~$) 3 ds/u 3. This is not surprising 

I
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V. LINE BREAKING FLOWS

We start with the explicit equilibrium solution of a

corner equilibrium as given in the last section. Ignor ing

the fact that this type of solution was suggested by adiabatic

considerations , we construct from it a solution of the full

equations of motion (15) - To be more precise , we construct

a solution of the full equations of motion linearized about

the specified static equilibrium . It is well known that there

are enormous subtleties in relating a linearized solution to

the solution of the original nonlinear system. However ,

exactly this linearization is very widely used; for example ,

more than 95% of the literature of MI-ID stability is based on

these equations . To be still more precise , we do somewhat

better than the usual linearization . Assuming that the flow

velocity , u, is small, we drop pu ’Vu from the momentum

equation (this yields the adiabatic system (16) with 3u/~ t

reinserted) . But no other approximation is made; e.g. we

do not replace p by p0 + p ’ where is the or ig ina l  equ i l ib r ium

quant i ty  and p ’ its per turbat ion.  This allows us to d i s t i n g u i s h

between the Euler ian ~/~ t and Lagrangian ~/~it + u •V which

are normally identified in a linearization . For example , the

explicit solution wi ll have p(x) unchanging in time , ~p/~ t = 0 ,

but the entropy and density are carried with the fluid , e.g.

~n/~ t + u V ~ = 0. This makes the solution believable for

longer periods of time than a conventional linearization.

To start take Cç ~ .,t = 1. This is not a trivial relabeling

of magnetic lines because it will be coupled with a mass flow

V V V V _~~~~~ 
V . .
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across the separatrix , the mass flow t~ 1lowing the magnetic

f l u x  f low implied by ~~~~~~ ~ 0. In par t i cu l a r , a s p e c i f ic

magnet ic  l ine  carry ing wi th  i t  mass at a ce r t ain  dens i ty

will split in two as it crosses the separatrix; another pair

of symmetric lines will touch as it reaches the separatrix ,

then leave in two different quadrants with the halves of the

individual lines reconnected differently. To be a solution

of the equations of motion it is clear tha t the configuration

must be symmetric; more precisely, lines which merge must

carry the same thermodynamic state; a line which splits

leaves two lines carrying the same state . ~e shall return to

the question of generalized adiabatic solutions which do not

have this restriction .

Specif i c a l l y ,  take

+ t (57)

where is the corner equilibrium solut i-en . The magnetic

f i eld

B — n ~ (58)

is unchanged in time as are .3 — curl B and p. The velocity
V 

component normal to B is

U V ’ ~ ~i 4 / a t  — — 1 ( 5 9 )

The vector no rmal component is

UI 
— V4t /~~V i4 I

2 ( 6 0 )

- 
~~~~~~~~~~~~~~~~ 

V
~~~~~~~~~~~~ __V V~~~~~~~~~ V r
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This component is singular only at the X-point and it is

easily seen to be square integrable for -l — n < 0.

Next we evaluate div u from the combined entropy/mass

equation for p.  Since ~p/~ t = 0

u~ Vp + y p div u = 0

or

div u = - ~/yp , 
• 

= d/d~p (61)

Also we recall that

- = - , p = p0 
- (6 2 )

(n+ 1)

Writing

u u
1

+ u ~ u 11 a8 (63)

we obtain

div u11 = B V ~ = div (~’i~/ } V ~~~
2 ) - \ 1~~~n/~~ ( 6 4 )

which determines a within an added constant on each flux

contour .

The velocity c tmponent u 11 is s ingular  not only at the

X-point, r = 0, but along the entire boundary of the sector ,

= 0. Near the corner , u 11 is square integrable for m < 2 ,

in other words , always . Near the edges , u~ is square integrable

for m > , ti > - ~~ . , which restrictions we adopt.

The momentum equation is satisfied since u is steady and

3u/~tt = 0. The only equations left to examine are mass and

entropy (the combination of the two , which involves ~~~~~ ~~~
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has already been used):

= — u~ Vp — p div u = — p~~/yp  = p [ l og (p / p l~”Y’ )~ (6 5)

= — u Vri =

The initial density or entropy profile , 
~~~~~~~~~~~ or r~(~~) is

arbitrary [the equilibrium equation relates only to p(ip)].

If r~ = const. initially, then this persists , ~~/3t = ~ip/
’
~~t = 0.

V 
More generally, the convection of 

~ 
and ~ gives rise to the

indicated time variation of ~ and r-~. The reason for the

non t r iv i a l  convection is that p is invariar.t in Eulerian

V 
and r~ in Lagrangian (moving ) coordinates.

A constant field component , B
~
, can be superposed on

the solution Just given provided that an app r op r ia te  f l ow

velocity u~ is also supplied. The condition curl E = 0

determines u~ within a constant on each k -contour . Although

u~ is singular , it is square integrable i f  n > - as before .

Consider next the more complex problem of a time-varying

adiabatic Doublet (Fig . 1). Assuming that the numerica l

evidence implies the mathematical existence of these solutions ,

we can rein troduce u
1 

and then div u and u 11 in the adiabatic

formulation (16). In the case of two symmetric islands,

mixing (shrinking islands) makes contact between two identical

states and there is no obvious entropy increase - this is what

is confirmed by use of the appropriate jump conditions. The

velocities that go with this equilibrium have the same form

• as t und in the exact solution of the corner , indicating that V

V 

~~~~~~~~~~~~~~~~~~~~~~~ 
-~~~~~~~ 

~~~~~~~~
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the adiabatic solution is a true solution of the full

(linearized ) equations of motion - with line-reconnection .

With asymmetric islands , the jump conditions give an

entropy increase (p1 and p 2 mix to form p~ ) - The jump in

entropy is exactly the entropy of mixing and no more.

Consistent with this nontrivial mixing , the adiabatic velocity

V component u 11 turns out to have a ó-funct ion at the separa t r ix .

This is truly an adiabatic limiting solution only , not an

exact solution of the equations of motion .

In the case of asymmetric sp l i t t ing  (growing islands in

Fig . 1), the jump conditions show that p2 in the newly

created regions , so that this case can be expected to be an

actual solution of the equations of motion .

A maximum or minimum of i~ (e.g. the center of an island)

is also a critical point , ~ iLs = 0. There is no adiabatic

evidence (theoretical or numerical) that the current is not

smooth, but we may investigate the consequences of postulating

~ r~~, ~ z m . - 2, at an extremum of ~~~. Allowing V~~~~
V

V/ V .t  � 0

at this  c r i t ica l  point yields  a veloci ty  f i e ld  wi th f i n i t e

k ine t ic  energy . It must , nevertheless, be rejected on phys ica l

grounds , because ~~/~~t ~ 0 implies the presence of a mass

source or sink; this is r~ot allowable. We conclude that only

at a hyperbolic cr i t ical  point is this  type of s ingu la r i t y

re levan t .  V

We o f f e r  now a conjec ture  as to the possible behavior at

an X—point  of the f u l l  non l inear  t ime-dependent ideal V

equations (15) . At a two-dimensional x—point the velocity of

- ~~~~~~~~~~~~~
V — - V V V
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an Alfvén wave is zero ; ( the projected signal  speed in the

plane remains zero with a nonzero third component , Br). In

the “normal ” case with bounded current  and i~i 
•
~~ r , the time

required for a signal to reach the critical point is infinite .

• There will therefore be a buildup of irregularities (large

derivatives) near this point .  A very similar argument is

used to show the instability of a compressive transonic

nozzle flow in fluid dynamics (with subsequent development

of a shock); a similar argument can also be given as the V

qualitative reason for dissipationless Alfvén wave heating

at a resonance , k.B  = 0 (the propagation speed normal to

the resonant surface approaches zero) . We conjecture that

“in general” , a s ingular i ty  of the type ~ ~~. rm , 1 ~ m < 2 ,

• will develop after a finite period of time . This seems to

be a d i f f i c u l t  ana ly t ica l  question to resolve . A good two-

dimensional numerical code could probably detect such a

phenomenon . For a certain period of time the value of ~ at

a separatr ix (in the presence of waves) would be observed to

remain approxima tely cons tant ,  but a f t e r  a precise time , ~

should be seen to vary in a manner insensi t ive to choice of

mesh size , etc . There wil l  be an automat ic  problem with

numerical accuracy near the X-point since the solution wil l

become irregular whether or not the conjec tured singular ity

arises. However , it should not be difficult to find that

the globa l behavior ( e .g .  changing ‘P at the X-point or a

bui ldup  of c u r r e n t)  is reproducible.
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The s ignif icance of the square-integrabili ty  condition

for velocity is not simple . It is relatively clear that

one should discard solutions or , at least , examine them very

careful ly  if the kinetic energy is i n f i n i t e. On the other

hand , opening the doors to arbitrary square—integrable

perturbations leads to a Pandora ’s box of disturbing possi-

bilities. Consider , for examp le , the linearized equations

of motion and a flux function

‘P 
= + t’P1 ( 6 7 )

where is smooth , ~ 0, and has a cusp at which

is unbounded . Since u•~ ’P0 
= - P]~ u~1 is not only square

integrable , it is bounded (u 1 
is square- in tegrable  if V. ,•~ i s )  . 

V

But for arbitrarily small t , the per turbat ion 
~~ 

changes

the topology of the f l u x  surface .

This is not particularly disturbing with regard to

solutions of the equations of motion , but it is quite dis turb-

ing for variational (SW ) s tab i l i ty  where one is presumably

working in a Hu bert space in which the displacement

( E ~•V ’P 0 — ‘Pr ) can easily alter the topology. Presumably,

such nontopology—preserving displacements will usually increase

the potential energy , in which case they are innocuous . First

of all , rio such theorem has been proved (or ment ioned) .

Secondly, it is easy to construct  counterexamples of ideal

(nonresis t ive) tear ing .1 Thi r d l y ,  s t a b i l i t y  of a “ standard ’

separatrix is entirely different from that of an adiabatic

separa t r ix)  These c ’uest ions w i l l  be broached elsewhere . V
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The explicit corner , line reconnection solution presented

here and its relat ion to ear l ier  adiabatic examples were

presented and fully discussed at a Gordon Conference in

Wolfeboro , New Hampshire , June , 1977 , also at the Sherwood

Theoretical Meeting in San Diego , May, 1977 , at the Plasma

Physics Division meeting of the APS in Atlanta , November ,

1977 , and at a number of in tervenin.~i seminars and colloquia

at various univers i t ies .

L ___________________J
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VI . CONCLUSION

We have shown by plausible arguments that a previously

described class of adiabatic time—dependen t solutions (type

one) with complex topology has a subset (no mixing of regions

with d i f f e r e n t  density) in which reinsertion of the ( small)

ve locity field probably gives a legitimate solution (type two)

of the equations of motion in the limit of slow motion. We

have also exhibited an explicit  exact solution ( type two ) of

the linearized ideal equations in a special separatrix

configuration with flow across the separatrix. The role

played by dissipation in magnetic line reconnection is, to

a large extent , unknown .
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Figure Captions

Fig . 1: Comp lex Topology

Fig. 2: Resistive evolution from Belt Pinch to

Doublet as external coil pinches the

“waist” . Current layer develops and

moves with separatrix.

Fig. 3: Moving Object Breaking Magnetic Lines .

Fig. 4:  Tubular Domain.

Fig. 5: Toroidal. Domain , Magnetic Line Map .

Fig. 6: Interior Domain , With and Without Corner.

Fig . 7: Corner Solution.

iJ

I

L— _ _ _ _ _ _  



-‘I

—37 - .

‘-4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

--4

~~~~~- —- -



—

—38 --

(a) Initial State
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(b) Before Isletion I
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